Published in

Trans Tech Publications, Solid State Phenomena, (156-158), p. 579-584, 2009

DOI: 10.4028/www.scientific.net/ssp.156-158.579

Links

Tools

Export citation

Search in Google Scholar

Optimization of the Luminescence Properties of Silicon Diodes Produced by Implantation and Annealing

Journal article published in 2009 by Tzanimir Arguirov, Teimuraz Mchedlidze ORCID, Manfred Reiche, Martin Kittler
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Incorporation of optical components into microelectronic devices will significantly improve their performance. Absence of effective Si-based light emitter hampers such integration. In the present work light emitting Si diodes, fabricated by dopant (boron or phosphorous) implantation and annealing are investigated. Different implantation doses and annealing temperatures were employed. The efficiency of the electroluminescence (EL), obtained from such structures was measured and correlated with the fabrication process parameters. As previously reported, the EL of band-to-band radiative transition in Si is strongly influenced, by the dopant implantation dose, i.e. higher doses usually enhance EL. Our results suggest that the effect is mainly related to the increase of minority carrier lifetime in the substrate. Distinct measurements showed that the higher implantation doses lead longer carrier lifetimes in the samples. The correlation between lifetime and the EL efficiency could be satisfactory explained in the frame of a classical model, considering the carrier-injection dependence of the rates of the three main recombination mechanisms in silicon, i.e. multi-phonon, radiative and Auger recombination. We suppose that the increase in the implantation dose improves minority carrier lifetime due to the gettering of impurity atoms from the substrate material to the highly doped emitter region.