Dissemin is shutting down on January 1st, 2025

Published in

Trans Tech Publications, Materials Science Forum, (787), p. 18-22, 2014

DOI: 10.4028/www.scientific.net/msf.787.18

Links

Tools

Export citation

Search in Google Scholar

Structural and Optical Properties of ZnO<sub>1-</sub><sub>x</sub>S<sub>x</sub> Thin Films Grown by Pulse Laser Deposition on Glass Substrates

Journal article published in 2014 by Lei Zhang, Liang Heng Wang, Ming Kai Li, Xun Zhong Shang, Yun Bin He ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

With a wide band gap of 3.4 eV and a large exciton binding energy of 60 meV at room temperature, ZnO is attractive for blue and ultra-violet optoelectronic devices, and transparent conducting oxide films for photovoltaic applications. For a semiconductor to be useful, particularly in reference to optoelectronic devices, band gap engineering is of great importance in device development. Alloying of MgO and CdO with ZnO has been studied extensively in comparison to other ZnO alloys incorporating equivalent anions like ZnO1-xSx (ZnOS). In this work, high-quality ZnOS thin films were grown on glass substrates by pulsed laser deposition using a ZnS ceramic target with varying O2 partial pressures between 0 and 6 Pa. ZnOS alloys with a wurtzite structure were achieved and no evident phase separation was observed in the whole composition range as determined by X-ray diffraction. The optical transmission measurements show that the average transmittance in the visible range of the films is about 80%. The absorption edges of the films first shift towards low-energy side with increasing the oxygen partial pressure and then blueshift when the oxygen partial pressure is over 2 Pa. The bandgap energies of the ZnOS films were calculated to change from 3.06 to 3.72 eV, showing a nonlinear variation with a bowing behavior that was previously reported.