Published in

Trans Tech Publications, Materials Science Forum, (706-709), p. 578-583, 2012

DOI: 10.4028/www.scientific.net/msf.706-709.578

Links

Tools

Export citation

Search in Google Scholar

High Performance Beta Titanium Alloys as a New Material Perspective for Cardiovascular Applications

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

During the last few decades, titanium alloys are more and more popular and developed as biomedical devices because of their excellent biocompatibility, very good combination of mechanical properties and prominent corrosion resistance [1-3]. Recently, a new generation of beta titanium alloys dedicated to biomedical applications has been developed. Based on biocompatible alloying elements such as Ta, Nb, Zr and Mo, these alloys were designed as low modulus alloys [4] or nickel-free superelastic materials [5, 6] mainly for orthopedic or dental applications as osseointegrated implants. Beta type titanium alloys take great advantages from their capacity to display several deformation mechanisms as a function of beta phase stability. Therefore, from low to high beta stability, stress assisted martensitic phase transformation (β-α’’), mechanical twinning or simple dislocation slip can alternatively be observed [7]. As a consequence, a very large range of mechanical properties can be reached, including low apparent modulus, large reversible elastic deformation or high yield stress. Although titanium alloys display now a long history of successful applications in orthopedic and dental devices, none of them have been commercially exploited in the area of coronary stents, despite their superior long term haemocopatibility compared to the 316L stainless steel. However, according to previous researches on the biocompatibility of various metals, the corrosion behavior of stainless steel is dominated by its nickel and chromium components, which may induce redox reaction, hydrolysis and complex metal ion–organic molecule binding reactions, whereas none are observed with titanium [8, 9].