Published in

Trans Tech Publications, Materials Science Forum, (706-709), p. 461-466, 2012

DOI: 10.4028/www.scientific.net/msf.706-709.461

Links

Tools

Export citation

Search in Google Scholar

Development of a Collagen/Clay Nanocomposite Biomaterial

Journal article published in 2012 by Alejandra Reyna-Valencia, Pascale Chevallier, Diego Mantovani
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Collagen hydrogels are widely used as three-dimensional scaffolds for cells and tissue in culture environments. These materials, which consist of crosslinked biopolymer (protein-based) networks in aqueous media, are particularly suitable for recreating part of the extra-cellular matrix, but their poor mechanical properties represent a major limitation. One strategy to enhance the strength of this kind of hydrogels might be to incorporate clay nanoscopic particles. In fact, it has been observed that the charged surface of clay nanosheets can interact with certain functional groups belonging to polymer molecules, yielding stronger networks. Moreover, clay particles are recognized to be biocompatible. In the present work, the gelation process and the resulting morphological and mechanical properties of collagen/laponite clay nanocomposite hydrogels were invastigated. Upon gelation, the biopolymer molecules assemble into nanoscale fibrils, which bundle into fibers and entangle into a three-dimensional network. The network characteristics depend on tunable parameters such as pH and clay concentration.