Published in

American Geophysical Union, Geophysical Research Letters, 13(41), p. 4745-4752, 2014

DOI: 10.1002/2014gl060501

Links

Tools

Export citation

Search in Google Scholar

Observations of gravity wave forcing of the mesopause region during the January 2013 major Sudden Stratospheric Warming

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Studies of vertical and interhemispheric coupling during Sudden Stratospheric Warmings (SSWs) suggest that gravity wave (GW) momentum flux divergence plays a key role in forcing the middle atmosphere, although observational validation of GW forcing is limited. We present a whole atmosphere view of zonal winds from the surface to 100 km during the January 2013 major SSW, together with observed GW momentum fluxes in the mesopause region derived from uninterrupted high-resolution meteor radar observations from an All-Sky Interferometric Meteor Radar system located at Trondheim, Norway (63.4°N, 10.5°E). Observations show GW momentum flux divergence 6 days prior to the SSW onset, producing an eastward forcing with peak values of ∼+145 ± 60ms−1d−1. As the SSW evolves, GW forcing turns westward, reaching a minimum of ∼−240 ± 70ms−1d−1∼+18 days after the SSW onset. These results are discussed in light of previous studies and simulations using the Whole Atmosphere Community Climate Model with Specified Dynamics. ; ©2014. The Authors. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.