Published in

Trans Tech Publications, Materials Science Forum, (631-632), p. 305-310, 2009

DOI: 10.4028/www.scientific.net/msf.631-632.305

Links

Tools

Export citation

Search in Google Scholar

Topology Optimized Design of Functionally Graded Piezoelectric Resonators with Specified Resonance Frequencies

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

This work explores the design of piezoelectric resonators based on functionally graded material (FGM) concept. The goal is to design single-frequency Functionally Graded Piezoelectric Resonators (FGPR) subjected to the following requirements: (i) an assurance of the specified resonance frequency, and (ii) for most acoustic wave generation applications, the FGPR is required to oscillate in the piston mode. Several approaches can be used to achieve these goals; however, a novel approach is to design the piezoelectric transducer by using Topology Optimization Method. Accordingly, in this work, the optimal material gradation of an FGPR is found, which maximizes a specified and single resonance frequency subjected to a volume constraint. To track the desirable piston mode, a mode-tracking method utilizing the modal assurance criterion (MAC) is applied. The continuous change of piezoelectric, dielectric, and elastic properties is achieved by using the graded finite element (GFE) concept, where these material properties are interpolated inside the finite element using interpolation functions. The optimization algorithm is constructed based on sequential linear programming (SLP), and the concept of the Continuum Approximation of Material Distribution (CAMD) is considered. The software is implemented in MATLAB language. In addition, to illustrate the method, a two-dimensional FGPR is designed with plane strain assumption. Performance of designed FGPR is compared with non-FGPR performance.