Published in

Springer, Plant Cell Reports, 3(27), p. 489-498, 2007

DOI: 10.1007/s00299-007-0475-8

Links

Tools

Export citation

Search in Google Scholar

The effect of co-cultivation and selection parameters on Agrobacterium-mediated transformation of Chinese soybean varieties. Plant Cell Rep. 27, 489-498

Journal article published in 2008 by Sheng-Jun Liu, Zhi-Ming Wei, Jian-Qiu Huang
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In the present study, an efficient Agrobacterium-mediated gene transformation system was developed for soybean [Glycine max (L.) Merrill] based on the examinations of several factors affecting plant transformation efficiency. Increased transformation efficiencies were obtained when the soybean cotyledonary node were inoculated with the Agrobacterium inoculum added with 0.02% (v/v) surfactant (Silwet L-77). The applications of Silwet L-77 (0.02%) during infection and L-cysteine (600 mg l(-1)) during co-cultivation resulted in more significantly improved transformation efficiency than each of the two factors alone. The optimized temperature for infected explant co-cultivation was 22 degrees C. Regenerated transgenic shoots were selected and produced more efficiently with the modified selection scheme (initiation on shoot induction medium without hygromycin for 7 days, with 3 mg l(-1) hygromycin for 10 days, 5 mg l(-1) hygromycin for another 10 days, and elongation on shoot elongation medium with 8 mg l(-1) hygromycin). Using the optimized system, we obtained 145 morphologically normal and fertile independent transgenic plants in five important Chinese soybean varieties. The transformation efficacies ranged from 3.8 to 11.7%. Stable integration, expression and inheritance of the transgenes were confirmed by molecular and genetic analysis. T(1) plants were analyzed and transmission of transgenes to the T(1 )generation in a Mendelian fashion was verified. This optimized transformation system should be employed for efficient Agrobacterium-mediated soybean gene transformation.