Published in

Trans Tech Publications, Materials Science Forum, (556-557), p. 347-350, 2007

DOI: 10.4028/www.scientific.net/msf.556-557.347

Trans Tech Publications, Materials Science Forum, p. 347-350

DOI: 10.4028/0-87849-442-1.347

Links

Tools

Export citation

Search in Google Scholar

Electrical Characterisation of 4H-SiC Epitaxial Samples Treated by Hydrogen or Helium

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

This paper presents results of investigations about the influence of Hydrogen (introduced by annealing or plasma implantation), and Helium (ion implantation followed by a proper annealing for creating nanocavities) on the electrical properties of 4H-SiC n-type epitaxial samples. First, 4HSiC epitaxial layers were hydrogenated either by annealing under H2 ambient or by a RF plasma treatment. This last process took place before or after the deposition of Schottky contacts. Two different annealing temperatures were imposed (300°C and 400°C), as well as two plasma hydrogen doses for the same low energy. An improvement of electrical characteristics (25 % increasing of the minority carrier diffusion length, lowering of ideality factor, better switching characteristic) is detected for samples annealed at 400°C. The treatment of 4H-SiC surface in hydrogen plasma through Ni metal also increases the diffusion length, but not sufficiently to have an effect on I-V characteristics. A second set of 4H-SiC epitaxial layers were secondly implanted with He+ ions at two distinct temperatures. An annealing at 1700°C during 30 minutes under argon atmosphere was then carried out. C-V measurements revealed the presence of a high charge density zone around the nanocavities, containing fixed negative charges, opposite in sign to the donor atoms.