Published in

Trans Tech Publications, Materials Science Forum, p. 327-330

DOI: 10.4028/0-87849-963-6.327

Trans Tech Publications, Materials Science Forum, (483-485), p. 327-330, 2005

DOI: 10.4028/www.scientific.net/msf.483-485.327

Links

Tools

Export citation

Search in Google Scholar

Investigation of Stacking Fault Formation in Hydrogen Bombarded 4H-SiC

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The effects of hydrogen and proton irradiation on stacking fault formation in 4H-SiC are investigated by an optical pump-probe method of imaging spectroscopy. We report optically stimulated nucleation and expansion of stacking faults (SFs) in 0.6 keV 2H+ implanted n-/n+ and p+/n-/n+ structures. The activation enthalpy for recombination enhanced dislocation glide (REDG) in hydrogenated samples (~0.25 eV) is found to be similar to that in a virgin material. Our results indicate that SFs mainly nucleate at the internal n-/n+ interface, beyond reach of hydrogen, thus justifying minor SF passivation effect. No REDG could be initiated optically in 2.5 MeV proton irradiated samples due to radiation defects providing alternative recombination channels to bypass the REDG mechanism. The radiation damage was verified by DLTS, revealing several new levels below EC in the range 0.4-0.80 eV, and by PL, showing the onset of D-center related luminescence band and concurrent increase of the nonradiative recombination rate.