Published in

Public Library of Science, PLoS ONE, 5(6), p. e19899, 2011

DOI: 10.1371/journal.pone.0019899

Links

Tools

Export citation

Search in Google Scholar

Comparative Genomic Analysis of Chitinase and Chitinase-Like Genes in the African Malaria Mosquito (Anopheles gambiae)

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Chitinase is an important enzyme responsible for chitin metabolism in a wide range of organisms including bacteria, yeasts and other fungi, nematodes and arthropods. However, current knowledge on chitinolytic enzymes, especially their structures, functions and regulation is very limited. In this study we have identified 20 chitinase and chitinase-like genes in the African malaria mosquito, Anopheles gambiae, through genome-wide searching and transcript profiling. We assigned these genes into eight different chitinase groupings (groups I–VIII). Domain analysis of their predicted proteins showed that all contained at least one catalytic domain. However, only seven (AgCht4, AgCht5-1, AgCht6, AgCht7, AgCht8, AgCht10 and AgCht23) displayed one or more chitin-binding domains. Analyses of stage- and tissue-specific gene expression revealed that most of these genes were expressed in larval stages. However, AgCht8 was mainly expressed in the pupal and adult stages. AgCht2 and AgCht12 were specifically expressed in the foregut, whereas AgCht13 was only expressed in the midgut. The high diversity and complexity of An. gambiae chitinase and chitinase-like genes suggest their diverse functions during different developmental stages and in different tissues of the insect. A comparative genomic analysis of these genes along with those present in Drosophila melanogaster, Tribolium castaneum and several other insect species led to a uniform classification and nomenclature of these genes. Our investigation also provided important information for conducting future studies on the functions of chitinase and chitinase-like genes in this important malaria vector and other species of arthropods.