Dissemin is shutting down on January 1st, 2025

Published in

Springer (part of Springer Nature), Journal of Electronic Materials, 1(44), p. 377-383

DOI: 10.1007/s11664-014-3297-9

Links

Tools

Export citation

Search in Google Scholar

Design and Development of a TEG Cogenerator Device Integrated into a Self-Standing Natural Combustion Gas Stove

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Heating by gas combustion, by use of different types of systems and plants, is widespread in residential and industrial environments. One example is the gas stove, the heat-radiating unit of which operates autonomously with a local gas feed and, possibly, electricity for an optional fan convector. A thermoelectric generator (TEG) can be integrated within this type of autonomous gas heater for local production of electric power, to support electrical auxiliaries, where desired, without the need for any connection to the electricity grid. This approach can lead to easier installation and operation and increases overall efficiency. A new prototype of an autonomous gas heater has been implemented by integration of a TEG device of simple and robust design, easily operated by the end user. A small amount of heat is withdrawn and converted into electricity by the TEG. This enables self-sustaining operation and, moreover, powers new ancillary functions (e.g. fan convector) without extra electrical requirements and no need for an electrical connection.