Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Advanced Functional Materials, 13(26), p. 2078-2084, 2016

DOI: 10.1002/adfm.201504804

Links

Tools

Export citation

Search in Google Scholar

Graphene Reinforced Carbon Nanotube Networks for Wearable Strain Sensors

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Transparent, stretchable films of carbon nanotubes (CNTs) have attracted significant attention for applications in flexible electronics, while the lack of structural strength in CNT networks leads to deformation and failure under high mechanical load. In this work, enhancement of the strength and load transfer capabilities of CNT networks by chemical vapor deposition of graphene in the nanotube voids is proposed. The graphene hybridization significantly strengthens the CNT networks, especially at nanotube joints, and enhances their resistance to buckling and bundling under large cyclic strain up to 20%. The hybridized films show linear and reproducible responses to tensile strains, which have been applied in strain sensors to detect human motions with fast response, high sensitivity, and durability.