Published in

Springer, Journal of Molecular Modeling, 9(18), p. 4355-4366, 2012

DOI: 10.1007/s00894-012-1423-2

Links

Tools

Export citation

Search in Google Scholar

Molecular mechanism of the enhanced virulence of 2009 pandemic Influenza A (H1N1) virus from D222G mutation in the hemagglutinin: A molecular modeling study

Journal article published in 2012 by Dabo Pan, Weihua Xue, Xiaoting Wang, Jingjing Guo ORCID, Huanxiang Liu, Xiaojun Yao
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

D222G mutation of the hemagglutinin (HA) is of special interest because of its close association with the enhanced virulence of 2009 pandemic influenza A (H1N1) virus through the increased binding affinity to α2,3-linked sialylated glycan receptors. However, there is still a lack of detailed understanding about the molecular mechanism of this enhanced virulence. Here, molecular dynamics simulation and binding free energy calculation were performed to explore the altered glycan receptor binding mechanism of HA upon the D222G mutation by studying the interaction of one α2,3-linked sialylglycan (sequence: SIA-GAL-NAG) with the wild type and D222G mutated HA. The binding free energy calculation based on the molecular mechanics generalized Born surface area (MM-GBSA) method indicates that the D222G mutated HA has a much stronger binding affinity with the studied α2,3-linked glycan than the wild type. This is consistent with the experimental result. The increased binding free energy of D222G mutant mainly comes from the increased energy contribution of Gln223. The structural analysis proves that the altered electrostatic potential of receptor binding domain (RBD) and the increased flexibility of 220-loop are the essential reasons leading to the increased affinity of HA to α2,3-linked sialic acid glycans. The obtained results of this study have allowed a deeper understanding of the receptor recognition mechanism and the pathogenicity of influenza virus, which will be valuable to the structure-based inhibitors design targeting influenza virus entry process.