Published in

Wiley, Annals of Human Genetics, 6(73), p. 551-558, 2009

DOI: 10.1111/j.1469-1809.2009.00540.x

Links

Tools

Export citation

Search in Google Scholar

Validation Study of Genetic Associations with Coronary Artery Disease on Chromosome 3q13-21 and Potential Effect Modification by Smoking

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The CATHGEN study reported associations of chromosome 3q13-21 genes (KALRN, MYLK, CDGAP, and GATA2) with early-onset coronary artery disease (CAD). This study attempted to independently validate those associations. Eleven single nucleotide polymorphisms (SNPs) were examined (rs10934490, rs16834817, rs6810298, rs9289231, rs12637456, rs1444768, rs1444754, rs4234218, rs2335052, rs3803, rs2713604) in patients (N = 1618) from the Intermountain Heart Collaborative Study (IHCS). Given the higher smoking prevalence in CATHGEN than IHCS (41% vs. 11% in controls, 74% vs. 29% in cases), smoking stratification and genotype-smoking interactions were evaluated. Suggestive association was found for GATA2 (rs2713604, p = 0.057, OR = 1.2). Among smokers, associations were found in CDGAP (rs10934490, p = 0.019, OR = 1.6) and KALRN (rs12637456, p = 0.011, OR = 2.0) and suggestive association was found in MYLK (rs16834871, p = 0.051, OR = 1.8, adjusting for gender). No SNP association was found among non-smokers, but smoking/SNP interactions were detected for CDGAP (rs10934491, p = 0.017) and KALRN (rs12637456, p = 0.010). Similar differences in SNP effects by smoking status were observed on re-analysis of CATHGEN. CAD associations were suggestive for GATA2 and among smokers significant post hoc associations were found in KALRN, MYLK, and CDGAP. Genetic risk conferred by some of these genes may be modified by smoking. Future CAD association studies of these and other genes should evaluate effect modification by smoking.