Dissemin is shutting down on January 1st, 2025

Published in

Wiley Open Access, Human Brain Mapping, 5(27), p. 380-391, 2006

DOI: 10.1002/hbm.20246

Links

Tools

Export citation

Search in Google Scholar

Applying FSL to the FIAC Data: Model-Based and Model-Free Analysis of Voice and Sentence Repetition Priming

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

This article presents results obtained from applying various tools from FSL (FMRIB Software Library) to data from the repetition priming experiment used for the HBM’05 Functional Image Analysis Contest. We present analyses from the model-based General Linear Model (GLM) tool (FEAT) and from the model-free independent component analysis tool (MELODIC). We also discuss the application of tools for the correction of image distortions prior to the statistical analysis and the utility of recent advances in functional magnetic resonance imaging (FMRI) time series modeling and inference such as the use of optimal constrained HRF basis function modeling and mixture modeling inference. The combination of hemodynamic response function (HRF) and mixture modeling, in particular, revealed that both sentence content and speaker voice priming effects occurred bilaterally along the length of the superior temporal sulcus (STS). These results suggest that both are processed in a single underlying system without any significant asymmetries for content vs. voice processing.