Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Arthritis and Rheumatism, 11(60), p. 3455-3464, 2009

DOI: 10.1002/art.24935

Links

Tools

Export citation

Search in Google Scholar

Dabigatran, a direct thrombin inhibitor, demonstrates antifibrotic effects on lung fibroblasts

Journal article published in 2009 by Galina S. Bogatkevich, Anna Ludwicka-Bradley ORCID, Richard M. Silver
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Myofibroblasts are the principal mesenchymal cells responsible for tissue remodeling, collagen deposition, and the restrictive nature of lung parenchyma associated with pulmonary fibrosis. We previously reported that thrombin activates protease-activated receptor (PAR)-1 thereby inducing normal lung fibroblasts to differentiate to a myofibroblast phenotype resembling scleroderma lung myofibroblasts. Here we demonstrate that the thrombin inhibitor dabigatran inhibits in a dose-dependant manner thrombin's induction of myofibroblasts. Dabigatran inhibits thrombin-induced cell proliferation, α-smooth muscle actin (α-SMA) expression and organization, and the production of collagen and connective tissue growth factor (CTGF). Moreover, when treated with dabigatran scleroderma lung myofibroblasts produce less CTGF, α-SMA, and collagen type I. We conclude that dabigatran restrains important profibrotic events in lung fibroblasts and that this oral direct thrombin inhibitor warrants study as a potential anti-fibrotic drug for the treatment of fibrosing lung diseases, e.g. scleroderma lung disease and idiopathic pulmonary fibrosis.