Published in

Taylor and Francis Group, Nanotoxicology, 8(6), p. 857-866, 2011

DOI: 10.3109/17435390.2011.626532

Links

Tools

Export citation

Search in Google Scholar

Silver nanoparticle enhanced silver ion stress response inEscherichia coliK12

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract This study investigated the dissolution-based toxicity mechanism for silver nanoparticles to Escherichia coli K12. The silver nanoparticles, synthesised in the vapour phase, are effective anti-bacterial agents against the Gram-negative bacterium, E. coli K12. The nanoparticles associate with the bacterial cell wall, appearing to interact with the outer and inner membranes, and then dissolve to release Ag(+) into the cell and affect a transcriptional response. The dissolution of these nanoparticles in a modified LB medium was measured by inductively coupled plasma mass spectrometry (ICP-MS) and has been shown to follow a simple first-order dissolution process proportional to the decreasing surface area of the nanoparticles. However, the resulting solution phase concentration of Ag(+), demonstrated by the ICP-MS data, is not sufficient to cause the observed effects, including inhibition of bacterial growth and the differential expression of Cu(+) stress response genes. These data indicate that dissolution at the cell membrane is the primary mechanism of action of silver nanoparticles, and the Ag(+) concentration released into the bulk solution phase has only limited anti-bacterial efficacy.