Published in

IOP Publishing, Journal of Physics D: Applied Physics, 23(38), p. 4160-4167, 2005

DOI: 10.1088/0022-3727/38/23/004

Links

Tools

Export citation

Search in Google Scholar

Removal of formaldehyde from gas streams via packed-bed dielectric barrier discharge plasmas

Journal article published in 2005 by Hui-Xian Ding, Ai-Min Zhu, Xue-Feng Yang, Cui-Hong Li, Yong Xu
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Formaldehyde is a major indoor air pollutant and can cause serious health disorders in residents. This work reports the removal of formaldehyde from gas streams via alumina-pellet-filled dielectric barrier discharge plasmas at atmospheric pressure and 70 °C. With a feed gas mixture of 140 ppm HCHO, 21.0% O2, 1.0% H2O in N2, ~92% of formaldehyde can be effectively destructed at GHSV (gas flow volume per hour per discharge volume) of 16 500 h−1 and Ein = 108 J l−1. An increase in the specific surface area of the alumina pellets enhances the HCHO removal, and this indicates that the adsorbed HCHO species may have a lower C–H bond breakage energy. Based on an examination of the influence of gas composition on the removal efficiency, the primary destruction pathways, besides the reactions initiated by discharge-generated radicals, such as O, H, OH and HO2, may include the consecutive dissociations of HCHO molecules and HCO radicals through their collisions with vibrationally- and electronically-excited metastable N2 species. The increase of O2 content in the inlet gas stream is able to diminish the CO production and to promote the formation of CO2 via O-atom or HO2-radical involved reactions.