Dissemin is shutting down on January 1st, 2025

Published in

Wiley-VCH Verlag, ChemInform, 17(46), p. no-no, 2015

DOI: 10.1002/chin.201517012

Links

Tools

Export citation

Search in Google Scholar

ChemInform Abstract: A Sustainable Iron-Based Sodium Ion Battery of Porous Carbon-Fe3O4/Na2FeP2O7with High Performance.

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A type of porous carbon-Fe3O4 (e.g., PC-Fe3O4) composite with an industrially scalable production was introduced in the sodium ion battery application for the first time. The PC-Fe3O4 composite, consisting of highly dispersed Fe3O4 nanocrystals within the porous carbon with a relatively low weight percent of 45.5 wt%, could efficiently demonstrate high capacities of 225, 168, 127, 103, 98 and 90 mA h g−1 under the current densities of 50, 100, 200, 300, 400 and 500 mA g−1 with a good stability over 400 cycles. The utilization co-efficient of Fe3O4 nanocrystals was proven to be much higher than most of the Fe3O4 nanoparticles reported recently via the study of the capacity contribution of carbon originally. In addition, the robustness of electrode during the charge-discharge was well characterized by ex situ XRD and emission scanning electron microscopy (SEM). More importantly, a new concept of an elemental iron-based sodium ion battery of PC-Fe3O4/Na2FeP2O7 is presented. This is the first example to introduce an element-rich configuration in the sodium ion battery from the viewpoint of sustainability. The full battery demonstrated a superior capacity of 93 mA h g−1, high capacity retention of 93.3% over 100 cycles and work voltage around 2.28 V with the energy density of 203 W h kg−1. Such configuration of an iron-based sodium battery would be highly promising and sustainable owing to its low cost and high stability in grid storage.