Published in

Springer Verlag, Lecture Notes in Computer Science, p. 280-291

DOI: 10.1007/978-3-642-38868-2_24

Links

Tools

Export citation

Search in Google Scholar

Deformable Modeling Using a 3D Boundary Representation with Quadratic Constraints on the Branching Structure of the Blum Skeleton

Book chapter published in 2013 by Paul A. Yushkevich ORCID, Hui Gary Zhang
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We propose a new approach for statistical shape analysis of 3D anatomical objects based on features extracted from skeletons. Like prior work on medial representations [7,15,9], the approach involves deforming a template to target shapes in a way that preserves the branching structure of the skeleton and provides intersubject correspondence. However, unlike medial representations, which parameterize the skeleton surfaces explicitly, our representation is boundary-centric, and the skeleton is implicit. Similar to prior constrained modeling methods developed 2D objects [8] or tube-like 3D objects [13], we impose symmetry constraints on tuples of boundary points in a way that guarantees the preservation of the skeleton's topology under deformation. Once discretized, the problem of deforming a template to a target shape is formulated as a quadratically constrained quadratic programming problem. The new technique is evaluated in terms of its ability to capture the shape of the corpus callosum tract extracted from diffusion-weighted MRI. © 2013 Springer-Verlag.