Links

Tools

Export citation

Search in Google Scholar

Intracerebroventricular Injection of Anti-Fas Activates the Hypothalamus-Pituitary-Adrenal Axis and Induces Peripheral Interleukin-6 and Serum Amyloid A in Mice : Comparison with Other Ligands of the Tumor Necrosis Factor/Nerve Growth Factor Receptor Superfamily

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Fas is a receptor of the tumor necrosis factor (TNF)/nerve growth factor (NGF) receptor superfamily that mediates apoptosis and some inflammatory changes. As the central administration of TNF is known to activate the hypothalamus-pituitary-adrenal axis (HPAA) and to induce peripheral responses including induction of serum interleukin (IL)-6 and serum amyloid A (SAA), we investigated the effects of intracerebroventricular (i.c.v.) administration of agonist anti-Fas monoclonal antibody Jo2. Centrally administered anti-Fas (1 μg/mouse, i.c.v.) induced elevated levels of corticosterone, IL-6, and SAA comparable to those observed after i.c.v. administration of recombinant murine TNF. On the other hand, administration of murine NGF did not elevate serum corticosterone or IL-6, but induced SAA. Thus, Fas can trigger a centrally mediated anti-inflammatory response (HPAA activation) and induce a peripheral acute-phase response comparable to that induced with TNF, whereas NGF induces only acute-phase proteins.