Published in

Elsevier, Neurobiology of Disease, (89), p. 88-100, 2016

DOI: 10.1016/j.nbd.2016.02.003

Links

Tools

Export citation

Search in Google Scholar

Chronic L-DOPA administration increases the firing rate but does not reverse enhanced slow frequency oscillatory activity and synchronization in substantia nigra pars reticulata neurons from 6-hydroxydopamine-lesioned rats

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The pathophysiology of Parkinson's disease (PD) and of L-DOPA-induced dyskinesia (LID) is associated with dysfunctional neuronal activity in several nuclei of the basal ganglia. Moreover, high levels of oscillatory activity and synchronization have also been described in both intra- and inter-basal ganglia nuclei and the cerebral cortex. However, the relevance of these alterations in the motor symptomatology related to Parkinsonism and LID is not fully understood. Recently, we have shown that subthalamic neuronal activity correlates with axial abnormal movements and that a subthalamic nucleus (STN) lesion partially reduces LID severity as well as the expression of some striatal molecular modifications. The aim of the present study was to assess, through single-unit extracellular recording techniques under urethane anaesthesia, neuronal activity of the substantia nigra pars reticulata (SNr) and its relationship with LID and STN hyperactivity together with oscillatory and synchronization between these nuclei and the cerebral cortex in 6-OHDA-lesioned and dyskinetic rats.