Published in

Cambridge University Press, Proceedings of the International Astronomical Union, S293(8), p. 204-211, 2012

DOI: 10.1017/s1743921313012854

Links

Tools

Export citation

Search in Google Scholar

Shaping of the Inner Solar System by the Gas-Driven Migration of Jupiter

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractA persistent difficulty in terrestrial planet formation models is creating Mars analogs with the appropriate mass: Mars is typically an order of magnitude too large in simulations. Some recent work found that a small Mars can be created if the planetesimal disk from which the planets form has an outermost edge at 1.0 AU. However, that work and no previous work could produce a truncation of the planetesimal disk while also explaining the mass and structure of the asteroid belt. We show that gas-driven migration of Jupiter inward to 1.5 AU, before its subsequent outward migration, can truncate the disk and repopulate the asteroid belt. This dramatic migration history of Jupiter suggests that the dynamical behavior of our giant planets was more similar to that inferred for extra-solar planets than previously thought, as both have been characterised by substantial radial migration.