Published in

Elsevier, Transportation Research Part C: Emerging Technologies, (61), p. 29-48

DOI: 10.1016/j.trc.2015.10.012

Links

Tools

Export citation

Search in Google Scholar

Optimal operation of displaced left-turn intersections: A lane-based approach

Journal article published in 2015 by Jing Zhao ORCID, Wanjing Ma, Wanjing, K. Larry Head, Xiaoguang Yang
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Displaced left-turn (DLT) intersections that resolve the conflict between left-turn and opposing-through movements at the pre-signal are probably the most extensively used innovative intersection designs. The DLT intersection concept can be extended to ten different types according to the location of the left-turn transition area, the number of DLT approaches, and the possible setting of the bypass right-turn lane. This paper presents a generalized lane-based optimization model for the integrated design of DLT intersection types, lane markings, the length of the displaced left-turn lane, and the signal timings. The optimization is formulated as a mixed-integer non-linear program. This program is further transformed to a series of mixed-integer linear programming problems that can be solved by the standard branch-and-bound technique. Results from extensive numerical analyses reveal the effectiveness of the proposed method, as well as the promising property of assisting transportation professionals in the proper selection of DLT intersection types, and the design of geometric layout and signal timings.