Published in

Nature Research, Scientific Reports, 1(6), 2016

DOI: 10.1038/srep22277

Links

Tools

Export citation

Search in Google Scholar

Few-layer HfS2 transistors

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractHfS2 is the novel transition metal dichalcogenide, which has not been experimentally investigated as the material for electron devices. As per the theoretical calculations, HfS2 has the potential for well-balanced mobility (1,800 cm2/V·s) and bandgap (1.2 eV) and hence it can be a good candidate for realizing low-power devices. In this paper, the fundamental properties of few-layer HfS2 flakes were experimentally evaluated. Micromechanical exfoliation using scotch tape extracted atomically thin HfS2 flakes with varying colour contrasts associated with the number of layers and resonant Raman peaks. We demonstrated the I-V characteristics of the back-gated few-layer (3.8 nm) HfS2 transistor with the robust current saturation. The on/off ratio was more than 104 and the maximum drain current of 0.2 μA/μm was observed. Moreover, using the electric double-layer gate structure with LiClO4:PEO electrolyte, the drain current of the HfS2 transistor significantly increased to 0.75 mA/μm and the mobility was estimated to be 45 cm2/V·s at least. This improved current seemed to indicate superior intrinsic properties of HfS2. These results provides the basic information for the experimental researches of electron devices based on HfS2.