Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, Analytical Chemistry, 23(76), p. 6848-6852, 2004

DOI: 10.1021/ac049032l

Links

Tools

Export citation

Search in Google Scholar

Use of Performic Acid Oxidation To Expand the Mass Distribution of Tryptic Peptides

Journal article published in 2004 by Rune Mathiesen, Rune Matthiesen ORCID, Guy Bauw, Karen G. Welinder
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Significant identification of proteins by mass fingerprinting and partial sequencing of tryptic peptides is central to proteomics. However, peptide masses cluster with distances of approximately 1 Da. Expanding these clusters will give more peptides of unique masses, thereby identifying proteins with a higher significance. The mass clusters can be expanded downward by including more oxygen atoms in the peptides. Classic performic acid oxidation modifies three residues, Cys to CysO(3), Met to MetO(2), and Trp to TrpO(2). In this study, we compare the mass distributions of tryptic peptides computed from the predicted proteomes of Bacillus subtilis, Drosophila melanogaster, Arabidopsis thaliana, and Homo sapiens modified by oxidation, reduction, and reduction followed by carboxymethylation, carboxamidomethylation, or pyridylethylation. Forty to 46% of the eukaryotic tryptic peptides contain Cys, Met, or Trp. Additionally, the importance of mass accuracy of differentially modified tryptic peptides for significant protein identification by database searches was analyzed. The results show that performic acid oxidation gives markedly extended mass distributions at mass accuracies from +/-0.002 to +/-0.25 Da for the eukaryotes. The effect of the expanded mass distribution on significant protein identification was illustrated by searching simulated mass peak lists against the databases containing oxidized and reduced tryptic peptides. The specificity of formic acid oxidation was tested experimentally, and no general adverse effects were detected. Tryptic peptides provided a 100% sequence coverage of oxidized barley grain peroxidase by LC-MS, and the sequence coverages of oxidized and carboxymethylated bovine serum albumin were similar by MALDI-TOF MS analyses.