Published in

European Geosciences Union, Atmospheric Measurement Techniques Discussions, p. 1-21

DOI: 10.5194/amt-2016-28

Links

Tools

Export citation

Search in Google Scholar

AerGOM, an improved algorithm for stratospheric aerosol extinction retrieval from GOMOS observations. Part 1: Algorithm development

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The GOMOS instrument on EnviSat has succesfully demonstrated that a UV/Vis/NIR spaceborne stellar occultation instrument is capable of delivering quality data on the gaseous and particulate composition of Earth's atmosphere. Still, some problems related to data inversion remained to be treated. In the past, it was found that the aerosol extinction profile retrievals in the upper troposphere and stratosphere are of good quality at a reference wavelength of 500 nm, but suffer from anomalous, retrieval-related perturbations at other wavelengths. Identification of algorithmic problems and subsequent improvement was therefore necessary. This work has been carried out; the resulting AerGOM Level 2 retrieval algorithm together with the first data version AerGOMv1.0 forms the subject of this paper. First, a brief overview of the operational IPFv6.01 GOMOS algorithm is given, since the AerGOM algorithm is to a certain extent similar. Then, the discussion on the AerGOM algorithm specifically focuses on the new aspects that were implemented to tackle the aerosol retrieval problems. Finally, a first assess- ment of the obtained aerosol extinction data quality is presented, clearly showing significant improvement of aerosol profile shape, spectral behaviour and similarity to SAGE II data.