Published in

American Institute of Physics, Journal of Vacuum Science and Technology B, 2(34), p. 02L113

DOI: 10.1116/1.4942897

Links

Tools

Export citation

Search in Google Scholar

Critical thickness investigation of MBE-grown GaInAs/GaAs and GaAsSb/GaAs heterostructures

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

GaInAs/GaAs and GaAsSb/GaAs heterostructures were grown by molecular beam epitaxy with different In/Sb compositions and thicknesses in order to obtain samples with different amounts of initial strain. High resolution x-ray diffraction was used to extract the alloys composition, specify the presence of dislocations, and determine the extent of relaxation while transmission electron microscopy and x-ray topography were used to observe these dislocations and characterize their type and density. The onset for the formation of misfit dislocations was found to be in agreement with the equilibrium theory. However, the films remained coherently strained for thicknesses far beyond this value. The onset for strain relaxation was found by considering the kinetics of plastic deformation using the approach proposed by Tsao and coworkers [Phys. Rev. Lett. 59, 2455 (1987)]. The mechanism of extended defect creation leading to measurable strain relief is described as a multistage process related with the structural stability and metastability of the epitaxialfilms.