Published in

BioMed Central, BMC Nephrology, 1(14), 2013

DOI: 10.1186/1471-2369-14-60

Links

Tools

Export citation

Search in Google Scholar

Branchio-Oto-Renal Syndrome (BOR) associated with focal glomerulosclerosis in a patient with a novel EYA1 splice site mutation

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Background Branchio-oto-renal (BOR) syndrome is an autosomal dominant disorder characterized by branchial, ear, and renal anomalies. The most common gene mutated in BOR patients is EYA1, the human homolog of the Drosophila eyes absent gene, while mutations in SIX1 gene, the human homolog of sine oculis, encoding a DNA binding protein interacting with EYA1, have been reported less frequently. Recently, mutations in another SIX family member, SIX5, have been described in BOR patients, however, this association has not been confirmed by other groups. Case presentation In this study, we have clinically and genetically characterized a proband that displayed hearing loss, pre-auricular pits, branchial fistulae, hypoplasia of the left kidney, bilateral mild hydronephrosis, progressive proteinuria and focal glomerulosclerosis. Mutational analysis of EYA1 gene revealed a novel splice site mutation, c.1475+1G>C, that affects EYA1 splicing and produces an aberrant mRNA transcript, lacking exon 15, which is predicted to encode a truncated protein of 456 aa. Conclusion This report provided the functional description of a novel EYA1 splice site mutation and described for the first time a case of BOR syndrome associated with the atypical renal finding of focal glomerulosclerosis, highlighting the importance of molecular testing and detailed clinical evaluation to provide accurate diagnosis and appropriate genetic counselling. Keywords: BOR syndrome, EYA1, Focal Glomerulosclerosis, Mutational analysis, RNA analysis