Published in

De Gruyter Open, Translational Neuroscience, 1(1), p. 55-58, 2010

DOI: 10.2478/v10134-010-0008-9

Links

Tools

Export citation

Search in Google Scholar

Capzb2 protein expression in the brains of patients diagnosed with Alzheimer’s disease and Huntington’s disease

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract The silencing of actin capping protein ß2, Capzb2, by RNAi in developing cultured neurons results in short, dystrophic neurites reminiscent of cytoskeletal changes seen in diverse neurodegenerative diseases, including Alzheimer’s disease (AD) and Huntington’s disease (HD). Actin and tubulin are two major cytoskeletal proteins indispensable for normal neurite development and regenerative responses to injury and neurodegenerative stimuli. We have previously shown that Capzb2 binds tubulin and, in the presence of microtubule-associated protein tau, affects microtubule polymerization necessary for neurite outgrowth and normal growth cone morphology. Accordingly, Capzb2 silencing in hippocampal neurons results in short neurites with abnormal growth cones. Decreased neurite length is found in both AD and HD. In the first step towards uncovering the possible role of Capzb2 in these diseases, we studied Capzb2 protein expression in the postmortem brains of AD and HD patients. To determine whether disease-specific changes in Capzb2 protein accompany the progression of neurodegeneration, we performed Western Blot analysis of prefrontal cortices (PFC) and hippocampi (HPC) in AD patients and of PFC and heads of caudate nuclei (HCN) in HD patients. Our results show disease- and areaspecific dynamics in the levels of Capzb2 protein expression in the progressive stages of AD and HD.