Published in

Springer, Climatic Change, 1-2(134), p. 255-267, 2015

DOI: 10.1007/s10584-015-1499-7

Links

Tools

Export citation

Search in Google Scholar

Causes of drying trends in northern hemispheric land areas in reconstructed soil moisture data

Journal article published in 2015 by Brigitte Mueller ORCID, Xuebin Zhang
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The amount of soil moisture affects water availability, the occurrence of droughts and floods, and the frequency and intensity of heat waves in many regions across the globe. Here, we evaluate historical trends in soil moisture estimated by land-surface models (LSMs) with observed atmospheric forcing and trends simulated by global climate models participating in the Coupled Models Inter-comparison Project Phase 5 (CMIP5). We classify northern hemispheric land into wet and dry regions and analyze soil moisture changes in these regions. We find a significant decrease in soil moisture from 1951 to 2005 in the northern hemispheric land areas, in particular in dry regions, both in LSM and CMIP5 model simulations. Soil moisture trends in wet regions are less consistent among simulations. The increase in the area affected by drought (defined as the area where soil moisture is below its 10th percentile) from 1951 to 2005 is estimated to be 20 % (LSMs) and 30 % (CMIP5 models). A comparison between soil moisture simulated by LSMs and CMIP5 model output under different external forcings suggests that anthropogenic forcing contributed significantly to the observed drying and could explain the increase in the area affected by drought. As increases in atmospheric greenhouse gas concentrations will continue in the near future, dry areas are projected to become drier and larger in extent, which could negatively impact future water supply and food security.