Published in

Public Library of Science, PLoS ONE, 2(11), p. e0146722, 2016

DOI: 10.1371/journal.pone.0146722

Links

Tools

Export citation

Search in Google Scholar

Microvesicles from Mesenchymal Stromal Cells Are Involved in HPC-Microenvironment Crosstalk in Myelodysplastic Patients

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Exosomes/microvesicles (MVs) provide a mechanism of intercellular communication. Our hypothesis was that mesenchymal stromal cells (MSC) from myelodysplastic syndrome (MDS) patients could modify CD34+ cells properties by MVs. They were isolated from MSC from MDS patients and healthy donors (HD). MVs from 30 low-risk MDS patients and 27 HD were purified by ExoQuick-TC™ or ultracentrifugation and identified by transmission electron microscopy, flow cytometry (FC) and western blot for CD63. Incorporation of MVs into CD34+ cells was analyzed by FC, and confocal and fluorescence microscopy. Changes in hematopoietic progenitor cell (HPC) properties were assessed from modifications in microRNAs and gene expression in CD34+ cells as well as viability and clonogenic assays of CD34+ cells after MVs incorporation. Some microRNAs were overexpressed in MVs from patients MSC and two of them, miR-10a and miR-15a, were confirmed by RT-PCR. These microRNAs were transferred to CD34+ cells, modifying the expression of MDM2 and P53 genes, which was evaluated by RT-PCR and western blot. Finally, examining CD34+ cells properties after incorporation, higher cell viability (p = 0.025) and clonogenic capacity (p = 0.037) were observed when MVs from MDS patients were incorporated. In summary, we show that BM-MSC release MVs with a different cargo in MDS patients compared with HD. These structures are incorporated into HPC and modify their properties.