Dissemin is shutting down on January 1st, 2025

Published in

BioMed Central, BioData Mining, 1(9), 2016

DOI: 10.1186/s13040-016-0087-3

Links

Tools

Export citation

Search in Google Scholar

r2VIM: A new variable selection method for random forests in genome-wide association studies

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Background Machine learning methods and in particular random forests (RFs) are a promising alternative to standard single SNP analyses in genome-wide association studies (GWAS). RFs provide variable importance measures (VIMs) to rank SNPs according to their predictive power. However, in contrast to the established genome-wide significance threshold, no clear criteria exist to determine how many SNPs should be selected for downstream analyses. Results We propose a new variable selection approach, recurrent relative variable importance measure (r2VIM). Importance values are calculated relative to an observed minimal importance score for several runs of RF and only SNPs with large relative VIMs in all of the runs are selected as important. Evaluations on simulated GWAS data show that the new method controls the number of false-positives under the null hypothesis. Under a simple alternative hypothesis with several independent main effects it is only slightly less powerful than logistic regression. In an experimental GWAS data set, the same strong signal is identified while the approach selects none of the SNPs in an underpowered GWAS. Conclusions The novel variable selection method r2VIM is a promising extension to standard RF for objectively selecting relevant SNPs in GWAS while controlling the number of false-positive results.