2015 IEEE International Conference on Image Processing (ICIP)
DOI: 10.1109/icip.2015.7351489
Full text: Download
Accurate and robust spot tracking is a necessary tool for quantitative motion analysis in fluorescence microscopy images. Few track-ers however consider the underlying dynamics present in biological systems. For example, the collective motion of cells often exhibits both fast dynamics, i.e. Brownian motion, and slow dynamics, i.e. time-invariant stationary motion. In this paper, we propose a novel, multi-frame, tracker that exploits this stationary motion. More precisely , we first estimate the stationary motion and then use it to guide the spot tracker. We obtain the stationary motion by adapting a recent optical flow algorithm that relates one image to another locally using an all-pass filter. We perform this operation over all the image frames simultaneously and estimate a single, stationary optical flow. We compare the proposed tracker with two existing techniques and show that our approach is more robust to high noise and varying structure. In addition, we also show initial experiments on real microscopy images.