Published in

Nature Research, Nature Genetics, 6(43), p. 519-525

DOI: 10.1038/ng.823

Links

Tools

Export citation

Search in Google Scholar

Genome-partitioning of genetic variation for complex traits using common SNPs

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Recently, we reported a method to estimate the proportion of phenotypic variance explained by all SNPs from genome-wide association studies, and estimated that half of the heritability for human height was captured by common SNPs. Here we partition genetic variation for height, body mass index (BMI), von Willebrand factor (vWF) and QT interval (QTi) onto chromosomes and chromosome segments, using 586,898 SNPs genotyped on 11,586 unrelated individuals. We estimate that ~45%, ~17%, ~25% and ~21% of variance in height, BMI, vWF and QTi, respectively, can be explained by considering all autosomal SNPs simultaneously, and a further ~0.5–1% by X-chromosome SNPs for height, BMI and vWF. We show that variance explained by each chromosome for height and QTi is proportional to the total gene length on that chromosome. In genome-wide analyses, common SNPs in or near genes explain more variation than SNPs between genes. We propose a novel approach to estimate variation due to cryptic relatedness and population stratification. Our results provide further evidence that a substantial proportion of heritability is accounted for by causal variants in linkage disequilibrium with common SNPs; that height, BMI and QTi are highly polygenic traits; and that the additive variation explained by a part of the genome is approximately proportional to the total length of DNA contained within genes therein.