Published in

Wiley, Journal of Ecology, 1(103), p. 1-4, 2015

DOI: 10.1111/1365-2745.12342

Links

Tools

Export citation

Search in Google Scholar

Forest resilience, tipping points and global change processes

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Summary Anthropogenic global change compromises forest resilience, with profound impacts to ecosystem functions and services. This synthesis paper reflects on the current understanding of forest resilience and potential tipping points under environmental change and explores challenges to assessing responses using experiments, observations and models. Forests are changing over a wide range of spatio-temporal scales, but it is often unclear whether these changes reduce resilience or represent a tipping point. Tipping points may arise from interactions across scales, as processes such as climate change, land-use change, invasive species or deforestation gradually erode resilience and increase vulnerability to extreme events. Studies covering interactions across different spatio-temporal scales are needed to further our understanding. Combinations of experiments, observations and process-based models could improve our ability to project forest resilience and tipping points under global change. We discuss uncertainties in changing CO2 concentration and quantifying tree mortality as examples. Synthesis. As forests change at various scales, it is increasingly important to understand whether and how such changes lead to reduced resilience and potential tipping points. Understanding the mechanisms underlying forest resilience and tipping points would help in assessing risks to ecosystems and presents opportunities for ecosystem restoration and sustainable forest management.