Published in

MDPI, Remote Sensing, 10(5), p. 4977-5005, 2013

DOI: 10.3390/rs5104977

Links

Tools

Export citation

Search in Google Scholar

Analysis and Inter-Calibration of Wet Path Delay Datasets to Compute the Wet Tropospheric Correction for CryoSat-2 over Ocean

Journal article published in 2013 by M. Joana Fernandes, Alexandra L. Nunes, Clara Lázaro
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Unlike most altimetric missions, CryoSat-2 is not equipped with an onboard microwave radiometer (MWR) to provide wet tropospheric correction (WTC) to radar altimeter measurements, thus, relying on a model-based one provided by the European Center for Medium-range Weather Forecasts (ECMWF). In the ambit of ESA funded project CP4O, an improved WTC for CryoSat-2 data over ocean is under development, based on a data combination algorithm (DComb) through objective analysis of WTC values derived from all existing global-scale data types. The scope of this study is the analysis and inter-calibration of the large dataset of total column water vapor (TCWV) products from scanning MWR aboard Remote Sensing (RS) missions for use in the WTC computation for CryoSat-2. The main issues regarding the computation of the WTC from all TCWV products are discussed. The analysis of the orbital parameters of CryoSat-2 and all other considered RS missions, their sensor characteristics and inter-calibration is presented, providing an insight into the expected impact of these datasets on the WTC estimation. The most suitable approach for calculating the WTC from TCWV is investigated. For this type of application, after calibration with respect to an appropriate reference, two approaches were found to give very similar results, with root mean square differences of 2 mm.