Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Nature Physics, 3(5), p. 217-221, 2009

DOI: 10.1038/nphys1180

Links

Tools

Export citation

Search in Google Scholar

Strength of the spin fluctuation mediated pairing interaction in a high temperature superconductor

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Theories based on the coupling between spin fluctuations and fermionic quasiparticles are among the leading contenders to explain the origin of high-temperature superconductivity, but estimates of the strength of this interaction differ widely. Here we analyze the charge- and spin-excitation spectra determined by angle-resolved photoemission and inelastic neutron scattering, respectively, on the same crystals of the high-temperature superconductor YBa2Cu3O6.6. We show that a self-consistent description of both spectra can be obtained by adjusting a single parameter, the spin-fermion coupling constant. In particular, we find a quantitative link between two spectral features that have been established as universal for the cuprates, namely high-energy spin excitations and "kinks" in the fermionic band dispersions along the nodal direction. The superconducting transition temperature computed with this coupling constant exceeds 150 K, demonstrating that spin fluctuations have sufficient strength to mediate high-temperature superconductivity. ; Comment: 25 pages, 7 figures, including supplementary information, accepted for publication in Nature Physics