Published in

Wiley, River Research and Applications, 2(31), p. 239-255, 2014

DOI: 10.1002/rra.2732

Links

Tools

Export citation

Search in Google Scholar

A Comparison of Four Stream Substratum Restoration Techniques Concerning Interstitial Conditions and Downstream Effects

Journal article published in 2014 by J. Pander, M. Mueller, J. Geist ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Stream substratum plays a key role for many riverine species and has become a focus topic in the context of structural habitat improvements. There is a lack of studies that compare the effectiveness of different substratum restoration measures. Herein, we compare four restoration techniques (two different gravel introductions, substratum raking and sickle-formed constrictor) that were carried out in six replicate rivers. Each measure was monitored for changes in physicochemical substratum quality and the effects of the construction work on downstream sites. Generally, the effects on physicochemical substratum quality were highly variable between restoration types and rivers and strongly decreased within 1 year. Most pronounced changes of substratum quality were detected for the gravel introductions. Substratum raking and the sickle-formed constrictor had the smallest effects, which were dependent on the original substratum composition of the restored sites. At the same time, substratum raking caused an average fine sediment deposition of 17 kg m−2 on downstream sites, being sixfold higher than for the other measures. Consequently, all of the investigated substratum restoration techniques are confined to short-term improvement of substratum quality. This finding, together with the observed damage on downstream sites, suggests that a rethinking of the currently applied restoration techniques is required, better considering catchment and natural substratum dynamics in river restoration. Copyright © 2014 John Wiley & Sons, Ltd.