Published in

American Chemical Society, Macromolecules, 22(48), p. 8240-8252, 2015

DOI: 10.1021/acs.macromol.5b01958

Links

Tools

Export citation

Search in Google Scholar

Linear Viscoelasticity and Dielectric Spectroscopy of Ionomer/Plasticizer Mixtures: A Transition from Ionomer to Polyelectrolyte

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

For ionomers, unfavorable interaction between highly polar ion pairs and the low polarity polymer medium leads to ion aggregation. In contrast, for polyelectrolytes, the counterions prefer solvation in the polar medium to leave the chain charged and accordingly stretched due to the charge repulsion. In this study, linear viscoelastic and dielectric properties of mixtures of two ionomers with high dielectric constant low volatility plasticizers were examined. The ionomer chains having bulky side chains are not entangled. Upon increasing the plasticizer content, the terminal relaxation is significantly accelerated due to two effects: (1) a plasticizing effect lowering the Tg and (2) a higher dielectric constant that softens the ionic interactions, leading to ionic dissociation into isolated pairs that further boosts the static dielectric constant at low frequency/long time. A model incorporating these two mechanisms and utilizing a dielectric constant εC, after the nonionic segmental α relaxation as the relevant dielectric constant for ion dissociation, predicts quantitatively the accelerated dynamics, as ionomers transition to polyelectrolytes on dilution.