Dissemin is shutting down on January 1st, 2025

Published in

American Institute of Physics, Journal of Applied Physics, 4(113), p. 043909, 2013

DOI: 10.1063/1.4788808

Links

Tools

Export citation

Search in Google Scholar

Coercivity and its thermal dependence in microsized magnetic particles: Influence of grain boundaries

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Fe73.5Si13.5B9Nb3Cu1 powder particles have been obtained by gas atomization. Magnetization curves and coercivity were studied for particles ranging in size up to 1000 μm. The overall magnetic behavior of such material is a consequence of compositional heterogeneity of the microstructure as a whole. Anomalous temperature variation of coercivity (Hc) (i.e., a decrease in Hc with decreasing temperature) together with a decrease of saturation magnetization has been observed for less than 25 μm size. The origin of this behavior has been ascribed to metastable FeCu and FeNbSi phases in combination with an Fe-rich one. Making magnetic powders with coercive fields of the order of mOe remains a challenge for researchers. Our experiment has allowed us, at low temperature, achieving a coercive field of 9 Oe, much lower than those observed so far in this type of materials. This behaviour has been related with a FeCu phase present on grain boundaries.