Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, Nano Letters, 8(14), p. 4263-4272, 2014

DOI: 10.1021/nl500896d

Links

Tools

Export citation

Search in Google Scholar

All-wurtzite (In,Ga)As-(Ga,Mn)As core-shell nanowires grown by molecular beam epitaxy

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Structural and magnetic properties of (In,Ga)As-(Ga,Mn)As core-shell nanowires grown by molecular beam epitaxy on GaAs(111)B substrate with gold catalyst have been investigated.(In,Ga)As core nanowires were grown at high temperature (500 {\deg}C) whereas (Ga,Mn)As shells were deposited on the {1-100} side facets of the cores at much lower temperature (220 {\deg}C). High resolution transmission electron microscopy images and high spectral resolution Raman scattering data show that both the cores and the shells of the nanowires have wurtzite crystalline structure. Scanning and transmission electron microscopy observations show smooth (Ga,Mn)As shells containing 5% of Mn epitaxially deposited on (In,Ga)As cores containing about 10% of In, without any misfit dislocations at the core-shell interface. With the In content in the (In,Ga)As cores larger than 5% the (In,Ga)As lattice parameter is higher than that of (Ga,Mn)As and the shell is in the tensile strain state. Elaborated magnetic studies indicate the presence of ferromagnetic coupling in (Ga,Mn)As shells at the temperatures in excess of 33 K. This coupling is maintained only in separated mesoscopic volumes resulting in an overall superparamagnetic behavior which gets blocked below ~17 K. ; Comment: 37 pages, 8 figures