Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Scientific Reports, 1(6), 2016

DOI: 10.1038/srep19712

Links

Tools

Export citation

Search in Google Scholar

ExoMeg1: a new exonuclease from metagenomic library

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractDNA repair mechanisms are responsible for maintaining the integrity of DNA and are essential to life. However, our knowledge of DNA repair mechanisms is based on model organisms such as Escherichia coli, and little is known about free living and uncultured microorganisms. In this study, a functional screening was applied in a metagenomic library with the goal of discovering new genes involved in the maintenance of genomic integrity. One clone was identified and the sequence analysis showed an open reading frame homolog to a hypothetical protein annotated as a member of the Exo_Endo_Phos superfamily. This novel enzyme shows 3′-5′ exonuclease activity on single and double strand DNA substrates and it is divalent metal-dependent, EDTA-sensitive and salt resistant. The clone carrying the hypothetical ORF was able to complement strains deficient in recombination or base excision repair, suggesting that the new enzyme may be acting on the repair of single strand breaks with 3′ blockers, which are substrates for these repair pathways. Because this is the first report of an enzyme obtained from a metagenomic approach showing exonuclease activity, it was named ExoMeg1. The metagenomic approach has proved to be a useful tool for identifying new genes of uncultured microorganisms.