Published in

Elsevier, Earth and Planetary Science Letters, (391), p. 55-66

DOI: 10.1016/j.epsl.2014.01.042

Links

Tools

Export citation

Search in Google Scholar

Spatial variations of effective elastic thickness of the lithosphere in Central America and surrounding regions

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

As a proxy for long-term lithospheric strength, the effective elastic thickness (Te) can be used to understand the relationship between lithospheric rheology and geodynamic evolution of complex tectonic settings. Here we present, for the first time, high-resolution maps of spatial variations of Te in Central America and surrounding regions from the analysis of the coherence between topography and Bouguer gravity anomaly using multitaper and wavelet methods. Regardless of the technical differences between the two methods, there is a good overall agreement in the spatial variations of Te recovered from both methods. Although absolute Te values can vary in both maps, the qualitative Te structure and location of the main Te gradients are very similar. The pattern of the Te variations in Central America and surrounding regions agrees well with the tectonic provinces in the region, and it is closely related to major tectonic boundaries, where the Middle American and Lesser Antilles subduction zones are characterized by a band of high Te on the downgoing slab seaward of the trenches. These high Te values are related to internal loads (and in the case of the southernmost tip of the Lesser Antilles subduction zone also associated with a large amount of sediments) and should be interpreted with caution. Finally, there is a relatively good correlation, despite some uncertainties, between surface heat flow and our Te results for the study area. These results suggest that although this area is geologically complex, the thermal state of the lithosphere has profound influence on its strength, such that Te is strongly governed by thermal structure.