Published in

Elsevier, Journal of Crystal Growth, 23(312), p. 3555-3559, 2010

DOI: 10.1016/j.jcrysgro.2010.09.010

Links

Tools

Export citation

Search in Google Scholar

Growth kinetics of vanadium pentoxide nanostructures under hydrothermal conditions

Journal article published in 2010 by Waldir Avansi, Cauê Ribeiro ORCID, Edson R. Leite, Valmor R. Mastelaro ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The work reported here involved a study of the growth kinetics of V2O5nH2O nanostructures under hydrothermal conditions. The coarsening process of V2O5nH2O nanoribbons was followed by subjecting the as-prepared suspensions to hydrothermal treatments at 80 °C for periods ranging from 0 to 7200 min. X-ray diffraction (XRD) confirms that the hydrothermal treatments at 80 °C caused no significant modification of the long-range order structure of samples subjected to different periods of hydrothermal treatment. Field emission scanning transmission electron microscope (FE-STEM) was used to analyze the morphology and width distribution of the nanostructures. The results indicated that the crystal growth mechanism in the [1 0 0] direction of vanadium pentoxide 1D nanostructure under hydrothermal conditions is well described by the oriented attachment (OA) mechanism. This evidence was supported by HRTEM images showing the existence of defects at the interface between nanostructures, which is characteristic of the oriented attachment (OA) mechanism.