Published in

Nature Research, Nature Materials, 11(12), p. 1028-1032, 2013

DOI: 10.1038/nmat3739

Links

Tools

Export citation

Search in Google Scholar

Suppression of thermal conductivity by rattling modes in thermoelectric sodium cobaltate

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The need for both high electrical conductivity and low thermal conductivity creates a design conflict for thermoelectric systems, leading to the consideration of materials with complicated crystal structures1. Rattling of ions in cages results in low thermal conductivity2, 3, 4, 5, but understanding the mechanism through studies of the phonon dispersion using momentum-resolved spectroscopy is made difficult by the complexity of the unit cells6. We have performed inelastic X-ray and neutron scattering experiments that are in remarkable agreement with our first-principles density-functional calculations of the phonon dispersion for thermoelectric Na0.8CoO2, which has a large-period superstructure7. We have directly observed an Einstein-like rattling mode at low energy, involving large anharmonic displacements of the sodium ions inside multi-vacancy clusters. These rattling modes suppress the thermal conductivity by a factor of six compared with vacancy-free NaCoO2. Our results will guide the design of the next generation of materials for applications in solid-state refrigerators and power recovery.