Published in

IOP Publishing, Journal of Physics: Condensed Matter, 24(25), p. 246004

DOI: 10.1088/0953-8984/25/24/246004

Links

Tools

Export citation

Search in Google Scholar

Phase diagram and magnetic structures of the Co-bearing dugganites Pb3TeCo3A2O14(A = V, P)

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Exhibiting rich magnetic behaviour and potentially multiferroic properties, the dugganites, a Te(6+) containing subgroup of the langasite series, are an attractive family of compounds for future study. It was recently shown that Pb-bearing members of the dugganite series undergo distortions away from the P321 symmetry that is characteristic of the langasites. Here, we detail the consequences these distortions have on the magnetism exhibited by Pb3TeCo3V2O14 and Pb3TeCo3P2O14, solving the magnetic structures of both compounds with respect to a new supercell. Using neutron scattering and magnetic susceptibility measurements, we show that small applied magnetic fields can seriously perturb the delicate magnetic states in both of these systems. This is further demonstrated by presenting how doping P(5+) onto the nonmagnetic V(5+) site completely changes the magnetic structure from either of the end series members. Finally, it is shown using inelastic neutron scattering and magnetic susceptibility measurements that Pb3TeCo3V2O14 can be characterized using a model for isosceles trimers, which do not exist in the previously reported P321 subcell.