Published in

Nature Research, Nature Climate Change, 6(1), p. 308-312, 2011

DOI: 10.1038/nclimate1200

Links

Tools

Export citation

Search in Google Scholar

Coral and mollusc resistance to ocean acidification adversely affected by warming

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Increasing atmospheric carbon dioxide (CO(2)) concentrations are expected to decrease surface ocean pH by 0.3-0.5 units by 2100 (refs 1,2), lowering the carbonate ion concentration of surface waters. This rapid acidification is predicted to dramatically decrease calcification in many marine organisms(3,4). Reduced skeletal growth under increased CO(2) levels has already been shown for corals, molluscs and many other marine organisms(4-9). The impact of acidification on the ability of individual species to calcify has remained elusive, however, as measuring net calcification fails to disentangle the relative contributions of gross calcification and dissolution rates on growth. Here, we show that corals and molluscs transplanted along gradients of carbonate saturation state at Mediterranean CO(2) vents are able to calcify and grow at even faster than normal rates when exposed to the high CO(2) levels projected for the next 300 years. Calcifiers remain at risk, however, owing to the dissolution of exposed shells and skeletons that occurs as pH levels fall. Our results show that tissues and external organic layers play a major role in protecting shells and skeletons from corrosive sea water, limiting dissolution and allowing organisms to calcify(10,11). Our combined field and laboratory results demonstrate that the adverse effects of global warming are exacerbated when high temperatures coincide with acidification.