Published in

Springer, Mammalian Genome, 9-10(21), p. 499-508, 2010

DOI: 10.1007/s00335-010-9285-3

Links

Tools

Export citation

Search in Google Scholar

Chromosomal mapping of pancreatic islet morphological features and regulatory hormones in the spontaneously diabetic (Type 2) Goto-Kakizaki rat

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Insulin resistance and altered endocrine pancreas function are central pathophysiological features of type 2 diabetes mellitus (T2DM). The Goto-Kakizaki (GK) rat is a model of spontaneous T2DM characterised by reduced beta cell mass and genetically determined glucose intolerance and altered insulin secretion. To identify genetic determinants of endocrine pancreas histopathology, we carried out quantitative trait locus (QTL) mapping of histological phenotypes (beta cell mass -BCM and insulin-positive cell area -IPCA) and plasma concentration of hormones and growth factors in a F2 cohort derived from GK and normoglycemic Brown Norway rats. Although IPCA and BCM in the duodenal region of the pancreas were highly positively correlated (P 4) to growth hormome (GH) on chromosome 6 and prolactin on chromosome 17. These data suggest independent genetic control of the structure and function of ontologically different regions of the endocrine pancreas. Novel QTLs for corticosterone, prolactin and GH may contribute to diabetes in the GK. The QTLs that we have identified in this, and previous genetic studies collectively underline the complex and multiple mechanisms involved in diabetes in the GK strain.