Published in

American Chemical Society, Journal of the American Chemical Society, 27(134), p. 11161-11167, 2012

DOI: 10.1021/ja300304s

Links

Tools

Export citation

Search in Google Scholar

Stabilizing Gold Adatoms by Thiophenyl Derivatives: A Possible Route toward Metal Redispersion

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Tris(phenylthio)benzene molecules have been synthesized in order to explore their ability to trap single Au adatoms on an Au(111) surface. The resulting metal-organic complexes have been characterized with low-temperature scanning tunneling microscopy and infrared reflection absorption spectroscopy; possible structure models have been derived from density functional calculations. Upon room temperature deposition, the thiophenyl derivatives form dimer structures, comprising two molecules and six Au adatoms. Below 100 K, isolated molecules are found as well that have trapped up to six Au atoms. On the basis of the experimental results and calculated formation energies of the complexes, we discuss potential applications of the thioethers for the redispersion of metals on a catalyst surface. First experiments performed on Au particle ensembles prepared on alumina thin films suggest that the molecular ligands are indeed able to change the distribution of gold on the oxide surface.